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I, Introduction

[The following paper is essentially that prepared and read
at a seminar of the Philippine' Chemical Society. However,
some numerical examples of the analysis are added which an
industrial technologist may find convenient and helpful for
the interpretation of results.l

Several research, projects require the collection of ,data.
In chemistry and industry this is usually done by conducting
experiments which however should be designed to provide
maximum information under certain' restrictions 'of fixed
amount of time, effort and money and should also lead to
valid conclusions. '

Thispaper is intended to introduce the basic concepts of
experiments' involvingseveral factors. 'However, any such in-,
rroductory discussion must also include the basic experimental
designs. The present treatment of this subject matter is by
no means complete and 'it is mostly descriptive in nature to
interest chemists' and other technologists with limited statis
tical background to look into the possibility of giving statis-

, .

tics. an opportunity to help make their work more interesting
or'enlighteningir' not moreprofitabls in some aspects.

_ • • • .".~. ' .•.•..:'. . '.:C. 1 • • •

, , Designing an experiment involvesfheprinciples of replic
ation, randomization and the design proper, :Replication de
notes the execution of an experimen-t more thanonce' soas to"
increase precision arid to supplyan estimate of the experinientJ'
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al "error. It is replication which makes a test of significance'
possible. Valid conclusions are generally made after a test
of significance is performed.

The word treatment will be used to apply to temperature,
pressure, chemical fertilizers or machines used in an experi
ment. A set of treatments applied" to a set of experimental
units is said to be randomized When the treatment applied
to a particular unit is chosen at ra~dom by use of draw lots'
ortable of random numbers from the set of treatments. Any
two treatments are afforded" by randomization an equal chance
to"'he assigned "to adjacent or non-adjacent units in the de
sign, hence, any correlation between any two treatments tends
to; cancel out. " Randomization has been likened by Cochran
and "Co~ (1957) to "insurance against' disturbances that may
or. may not .occur "~nd that mayor may not be serious if they
do occur.;'" "" ".

"2 '. Basic Experimental Designs'

'With the' advent of modem statistics, 'both applied and
"' '

mathematical, many experimental designs are available: of
which the most commonly used are briefly men tioned 'here.
The e~istence of ~or~ complicated designs for 'more complex
situations will also be indicated briefly. The choice of a de
sign for a particular experiment depends largely on the restric
tions which may be placed on the assignment of the treat
ments to the experimental units. Also, the choice involves the
ability and familiarity of an experimenter to recognize all the
possible components contributing to the variability of the re
sponse to be measured and thereby making the design in such
a manner that some undesirable components should be elimi
nated if possible. If not possible, then the true effects of all
components affecting the measured response in a properly

",' 1 A test of significance is one which, by' use of a test criterion,
provides a test of hypothesis that an effect is zero.
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•
designed experiment could be estimated by known statistical
methods.

The simplest type of experimental design is known as the
completely randomized design. It is applicable when the
whole set of experimental units (or materials) are homo
geneous. For example, let an experiment be conducted to
evaluate the performance of three proposed additives to gaso
line to improve the performance of cars, say, in terms ot
mileage. Assume that it is possible to make measurements to
this effect. SUPpose we have nine cars of same make ancl
size. Let the treatments (additives) be Tl' T

2
, T

3
• where one

of these may be a control. These are to be assigned to the •
nine cars at random whereby three cars are to receive the
same treatment. In this setup, we assume the cars to be more
or less alike. It becomes necessary also to assume that nine
drivers selected have more or less the same driving ability.
In a completely randomized experiment, however, there need
not be equal number of experimental units (cars) for the treat-
ments. This unequal replication would allow some treatment
effects having more replication to be estimated more precisely
than others with less replication. It is to be pointed out how-
ever, that equal replication provides a more powerful test."
The observed measurements (Y) on this simple experiment can
be classified in one way, i.e., according to the treatment used:

•11 12 13

Yu Y21 Y31

Y12 Y
22' Y32

Y13 Y23 Y33

2 A test is said to be more powerful than another if the probability
that it rejects the alternative hypothesis when false is greater than
that of the other.
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With these data one can proceed to estimate the mean
value of the variable Y, the effects of the treatments
and to test if significant differences exist among the three
additives. A researcher could then choose the best additive
as far as car performance is concerned. Usually, a choice has to
depend also on the cost involved.

The second type of design which is the most popularly
used is the randomized complete blocks. When the experiment
al units exhibit a known pattern of heterogeneity such that
they can be classified into equal groups (or better known as
"blocks" in statistics), each consisting of homogeneous units,
then this design can be used provided that the number of
units in each block is equal to the number of treatments to
be used. It is seen therefore that this design requires an
additional restriction to that of the completely randomized.
With the three treatments TI , T2 , T3 , suppose there are nine
cars divided equally into three categories, (maybe same

~"make" but different sizes or same size but different "makes").
~ the randomized complete blocks design the treatments are

alloted at random to the three cars in each category. Data
resulting from such a design can be arranged in a two-way
classification, namely according to block and treatment:

The statistical analysis of these data can separate and estimate
the effects of treatments and blocks." Differences among' the
three treatments would be free 'from effects attributed to the
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'car categories. A test to determine significance of such .dif
ferences among treatments becomes meaningful. Valid con
elusions regarding these differences can therefore be made,

The third type called Latin Square, exhibits more restric
tions' on the plan. The pattern of heterogeneity in the ex
periment may be such that 1\'10 ways of blocking are possible,
say into equal number of rows and columns. Furthermore,
the number of units or trials in a row or column should be
equal to the number of treatments. For example, with the
same three treatments, assume that the trials will be made on
3 cars of same "make" and size. Let us say 'that three
drivers can run three trials. per day, .i.e., morning, afternoon.
evening.

Drivers

..: . 1 •.2 3

Morning ~=-l

T1 T2
T r.

3': .. ..
. . :

Dm9 Afternoon ..' . T2 1
3 ·T. ' ' 1

Eveninq T3 T1 T2

standard Plan .of a 3 x 3 Latin Square
It is observed in the plan that..a treatment is used once and
only once in a row (time) and once in a ·column (driver).
This is a characteristic 'feature of the Latin Square design.
'Data from such a design can he classified according to treat
'ment; row,' or column. ,The analysis of stich data includes
estimating an effect of treatment, time of trial and driver and
also test of significance of 'differences 'a:mong treatments.
Tests on differences amongmean responses for different times
of trial or drivers may also be· done-if desired .. The additional
features.Jike .time .of trial and, drivers whose, efects may not
h~llle~e~sar-Y.but.whose presence i~. the ;d~sign. rnav ~ffe~t the
measured response, could be separated from the true effects
of the treatments by this careful planning. Fisher and Yates
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(1957) give a list of Latin Squares' and their randomization
procedures.

3 . Analysis of Variance
The analysis of variance for each of these designs can

easily be learned from standard texbooks in statistical analy
sis. This analysis is an arithmetic procedure of partitioning
the observed variation of the data into the individual contri
butions of the components involved in the experiment. What
is given here outlines the steps involved when the design used
is the randomized complete blocks. The analysis for the other
designs can be done in a similar way.

In the randomized, complete blocks design an observation
in the jth block receiving the ith treatment, to be denoted
by Y ., is usually' represented as the sum of four terms: the

.J ,

general mean m, an effect ti due to the ith treatment, an ef-
feet bj due to the jth block, and a random error ei j which is
a residual and' may consist of all remaining, components not
explained by the first three terms.. This relationship is ordinari
ly given as a linear additive model.

Y,l')' = m + t· + b. + e••1 J 1).

i =1. 2. 3•• ,.; p treatments

j =1.2. 3. ,,'., r blocks,

The' estimates 111. t i and b j are obtained by a I east squares
procedure which minimi zes the sum 0 f squares due to error•.Y These
e8t~mcte5 are computed ~s fol~ows:

, m=C/rp. tihere C is the total of all observations.

T.
.t i =-t' -,~. where Ti is total for ith ~r~atment.

.. ::

•

3 Estimates obtained by this procedure are "best" lineal' est.imutes
and whose values are such that the sum of squares due to error is a
minimum.
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The formulas for the treatment and block .effects show these
as differential effects between the treatment or block means
and the mean yield m.

The test of a null hypothesis that the treatment effects
are zero (Le., treatment means are equal) is included in an
analysis of variance. This analysis is tabulated as follows:

ANALYSIS OF VARIANCE
FOR A RANDOMIZED COMPLETE BLOCKS DESIGN

Sources of Degrees of Sum of Mean
Variation Freedom Squares Squares F

-~-- -~.._.- ---<. -- --

Blocks r-l SS(B) MS(B)

Treatments p-l SS(T) MS(T) MS(T) IMS (E)

Error (r-l) (p-·l) SS(E) MS(E)

Total rp-l SS(Total)

•

SStn = -rl.rp

sum of squares due
to blocks,

sum 0 f squares due
to t reatmentli,

•
SStlot el ) = f t y.'2 - C2 • sum ot squares due

Fi ·i=l l} rp to all observations.

and SS(Error) = SS(Total - SS(B) - SS(T).
It can be seen that the total sum of squares, 'SS(Total), has
been partitioned into three sums of squares corresponding to
the three sources of variation of the measured responses.
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•
The entries in rhe column for mean squares are obtained

by dividing the sums of squares by their respective degree of
freedom.

•

The computed value of F given by MS(T)/MS(E) pro
vides a means of determining whether the differences among
the treatment means are significant or not at a pre-deter
mined level of significance. This observed value of F is com
pared with its tabular value (value of F if the null hypothesis
is true) at the given level of significance. An observed value
greater than the tabular indicates significant differences
among treatment means.

An analysis of variance for the completely randomized
design will have as sources of variation the treatments and
error while for a Latin Square the rows, columns, treatments
and error.

4. Numerical Example

Let the analysis be illustrated by the following data which
are expressed in kms.z'liter. These are observed on nine cars
belonging to three categories (blocks) used in an experiment
to estimate the effects of three additives (treatments) on gaso
line. One of these treatments may be a "control, i.e., without

• an additive.

TREATMENTS (GASOLINE ADDITIVES)
T T T Total

1 Z I._--. --- _ .._-
Mean

•

B 16.6 10.6 9.5 :,J6.7 12.23
1

Blockll B 15.3 10.2 8.8 34.3 11.43
%

(Categories) B 10.9 6.0 4.2 21.1 7.03
._---~-

of ear Total 42.8 26.8 22.5 92.1

Mean 14.27 8.93 7.60 10.23 = m

Let it be assumed that an observed response which depends
on a mean response m, a differential effect of the additive
used (t

l
) , another effect due to the category of the car (b.),

142



•
.and a' residual effect called error .(ejj), be represented by the
'following model:

Y.. = m + 1. + b. + e...
tJ . I J tJ

It is implied here that the effects t j , bj and the residual ejj
are additive, e.g., a treatment simply adds up an effect to
the mean response: The residual e.. , the part of the obserVed

. ~- -
response which is "unexplained", may partly be dUe to the
assumption of such simple model and partly due to random
fluctuations which can never be avoided.

The estimates of the effects of treatment and car catego-
ries are given as follows: . -

•
Treatment Effects

t
1
= + 4.04

t
2
= - 1.30

t
3

--:--2.74

Effects of' Car Categories

b, = + 2.00

b2 = + 1.20

b, = - 3·70

When these effects are combined with the mean response, in
in an additive manner, i.e., m + t. + b., . .the. sum is the

- J .J' .

"explained" part ·of the observation. The "unexplained" part
is the difference of the actual observation and the "explained" •
portion.

Explained (m + t. + b.)
. .. . 1 J r'

T
I

T
2

Ts

Residual (Yij - m - t j - b.)

T
I

T
2

Ts

B
1

16.27 10.93 9.49 + 0.33 - - 0.33 .01. .~

B2 15.47 ·10.13 8,69 -.., 0.17' 0.07 ..11. \.

Ba '11.075.73 4.29 - 0.17 ',0.27 - .09·
~ - -- - -_. -- • •• 4 _

• • I

The rows. and columns for residual should add up to zero.
In this example, they do notadd up to zero' because of round-
ing errors.:.' -,. .. . .
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•
, The analysis of variance indicated below shows that there
exists evidence of significant differences among the means
of the treatments and also among the categories of cars. This
can also be stated in terms of the effects, i.e., the effects due
to treatments and car categories are significantly different from
zero.

ANALYSIS OF VARIANCE

•
Source of
Variation

Degrees
of Freedom

Sum of
Squares

Treatments 2 76.29 38.14 Significant

Categories 2 47.04 23.52 Significant

Error 4 0.37 0.0925

-Total- 8 . -- ----123.70
.._------

The estimate of the standard error of a treatment mean
or effect is equal to O. 17.

J.0;25 =0.17.

From the estimates of the treatment effects an industrial tech-
• nician may realize the technological importance of these effects:

5. Factorial Experiments

In thepl:eceding, discussion the treatments belonged to
one factor, i.e.,' additive to a gasoline. A factor is 'defined
as a kind of treatment. A factor consists of different'Ievels.
either quantitative or qualitative values. ' For' example, the
factor- additive ,llP1Y hav~ two level$.~onsisting of two differ
ent amounts' of a particular additive, or two different types
9£.additives. ~ ,J., r. ,,- ... ' .. ,' ~ - . " . '.

~ '.. " :. '. .. .. .' .. . :. .

In many experiments two or more factors usually enter
into consideration. A treatment or treatment combination is

• 144-.- ~ .



•
then made up of the levels of each of the factors. Let us say
factor A, one kind of the additive to the gasoline, consists of
two amounts to be denoted by a

1
and a

2
• Let another factor

be a second type of additive; call this factor B and consisting
also of two levels, b, and b

2
•

A complete factorial experiment, i.e., consisting of all the
possible combinations of the levels, would have the following
four treatment combinations: alb

l
, alb2

, a
2bl

, a
2b2 • Such a

factorial arrangement can then use any appropriate experi
mental design, e. g., the randomized complete blocks. A block
in such a design would have four plots' (cars in the example} •
to which the four treatment combinations are randomly as-
signed.

Many of us are familiar with the classical method of vary
ing one at a time and holding all others constant, e.g., using
bl and varying the A-factor. The main objection to such
method arises when interaction between A and B exists, i.e.,
a level of A may be best for one level of B and another level
of A is best for another level of B. Which level of B should
then be used with the levels of A in such a classical experiment?

With modern statistical methods it is possible to study
the interplay of all the factors simultaneously and determine •
what combination of levels of these factors provides the opti-
mum response. Factorial experiments can give us not only
the differential effect of each factor (this is what the classic-
al experiment could give us) but at the same time the inter-
action between two or more factors. Interaction is defined
as a measure of the extent to which the effect of changing
the level of one factor depends on the levels of other factors.
It is the estimation of this interaction between two or more
factors that renders factorial experiments indispensable. In
fact, this type of experiments becomes extremely useful in

4 The agricultural connotation should be ignored when trial is other
than agricultural.
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exploratory experimental trials designed to find the proper
combinations of the levels of several factors that would. opti
mize the response.

6 . Analysis of p x q Factorial Experiments

In an experiment with two factors with p and q levels,
respectively, We would be able to estimate the effects of the
individual amounts of the factor A, the second factor B, inter
action between these two factors, and also the blocks used in

• the design. The main purpose in such an experiment would
be to study the interaction. If found insignificant, the indivi
dual effects of the factors may still be of some interest. Proper
recommendation as to which level of the A-factor to use in
conjunction with a level of B could be made after tests or
significance. The analysis is based on the model showing the
relationship between an observed response and the different
effects which affect the measured response.

•
i = 1. 2.

j =1. 2•

k =1. 2.

·...
·.. ,

·.. ,

P CIIIOunte of A

q QDounta of B

r bloc:fca.

•

~ere m='mean re~Dae

rk =effect of kth bIotic

ai = effect of ith level of factor A

b j =effect of.tth lweI of factor 8

(ab)ij =interaction betweelf ith level of A cmd jth level of B

eijk =rcmdom error on the (ijk)th observation.
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'lbe e.timates are obtained .a~f~llo..: .

ra =G'pqr where C =total of all pcrr ob.erv......ion.~

~ =~ ':': D1. -\ = total. .for- i.th,lev.l oftaetorA

-!k R - total for kth blockrk - pq - m. k ~

·B
b
j

=;J - m. Bj =totcilfor jth level of fac~r B

ad (em) ij = (AB) ij - ~ -- ~ ~~'.'
r qr pr

~er.e (M)ij =total of all observaUoDs to lIhichthe

treatlDlat comb~atioDIat b j ' 1& applied.
: ' . , ,

The 'hypothesis that the effects' of .. the p levels of A and
those of B are zero can be tested in an analysis of variance.
Similarly, the hypothesis of no interaction between. A aJlq::B
can also be tseted. . . '".

Analysis of Variance of p'.x'q~ 'F~ct~riarExp~rfutent
in a Randomized Complete Blocks Design; -

• ' '1-.'. . ~",;, . .

Source of Degrees of Sum of ... ·Mean
V"r;f1tion Fr"...dom Squares . 'SQjl~~ns 'F

Blocks r-l SS(R) MS (R)" ",.;.': .. .: "',\1. .,~~."."

A p-l SS(A) MS(A) MS(A)/~S~E).', ~ ,,;.. , ~

B q-l SS(B) MS(B) MS(B)/MS(E)
AB tp-l) (q-l) SS(AB) ,.~S(A~) MS(AB)/MS(E)

~ :: . . ~ ,; . - t

Error (pq-l) (r-l) SS(E) MS(E)

Total pqr-l ,~S(T()tal) ;' ; ~.l _ :..

T"e. sums ·of squares ~re comp1Jted. 8S in Sec.,.~,'

•

•

•

.' .:stil) iii.~"R: .:!f
.. - pqr'

;PI
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•
SS(A)

(AB) tj - cf - SS(A) - SSC!) ,--r- pqr I

~ B? 02
~(B) =L 1-

f pr 'PCir

SS(·AB) =[
. ij

• SS(Total) = [y2 - 02
ijk ijk -pijr

•

and SS(E) is obtained as a difference of SS(Total and
the other four sums of squares. The computed values
of the test-criterion F compared with corresponding tabular
values will show whether the effects of the levels of A, of B,
and the interaction between A and B, respectively, are signifi
cantly different from zero or not at a predetermined level
of significance. A greater computed value than the tabular
value of F indicates significance, hence, the rejection of the
hypothesis.

Numerical Example..

The analysis is being illustrated by a 2 X 2 factorial
experiment. The observations are as follows:

Treatments
'. \'; ~ .. Ii...

albl a1~2 °1'1 ~b2 Total

I 3.6 ' 1.1 24.7 6.3 41.. 2
odes

II 3.5 5.1 . 16.0 . ~.5 29.1

Total 7.1 12.2 , «J.2 10.8 10.3

RI
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1D observation Yi jk may then' be expressed by the model

qiyen in Sec. 6.

A table of means of the four treatment CXlmbinations

is qiven below:

al a2

hI 3.5 20.1 11.8

b2 6.1 5.4 5.8

4.8 12.8 8.8

From these means the estimates of effects are ebtcdned

•

•

Interaction ettects:

Effects of levels of A:

a 1 = - 4.0

.°2 =+ 4.0

. Effects of levels of B~

bI =+ 3.0

;)2 =- 3.0

~jb1 = + 4.3

a1'2:: - 4.3.·

•

ne blode effects.may also be estimated:

. 41 2
r1 =--;-- - 8.8 =1.5

- 29.1 . . - I 5rt - T - 8.8 - - •
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~p.n these effects are oombined·as in the assumed model.
the oomhination consists of the "explained" and the "unex
plained" or residual portions:

Fxplained Unexpl ained

m + rk + a. + b. + (ob) .. (Residual )
.1 J 1)

1'reatment alb l a 1b2 a2bl azbz. alh 1 a1b2 a2bl a202
Combination

mod< I 5.0 7.6 21. I) 7.0 -1.4 -0.5 +2.6 -0.7

Block 11 2.0 4.6 18.6 4.0 1.5 0.5 -2.6 0.5

The sum of each column and row for the residuals should
add up to zero. There are some rounding errors here involved.

The analysis of variance is given as follows:

R011l'ee of
Variation

I

d.r, ~U1n of Squares M"IUl Squares F

Blocks

A

B

AB
Error

Total

1

1

1

1

3

7

18.3013
125.6113

73.811:3
148.7812
18.9437

385.4488

18-.3013
125.6113 19.89*

73.8113 11.69·
148.7812 23.56~

6.3146 = 52-

•

The computed Fwalues for A and B both exceed the
tabular values of F at 5% level of significance. This means
that there exists enough evidence to show that the treatment
effects are not zero.

The interaction between A and B is also significant at
5%. To explain this interaction consider the following graph
of the means:
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One can see 'from this graphical representation the effect
of interaction, (i.e., the effect of changing the level of one
factor as dependent on the other factor). For a fixed
level of A, there is a change in the means as B increases.
The 'mean response decreases abruptly for az' 'and increases
slightly for az' aSB':i'~creases.' This changj, :js' both 'in amount
and direction. this' interaction is' a symmetrical relation
ship of A and B. The mean response has a rapid rise for b,
and gradual decrease for b" as A increases.

, . " I, ,_

·'f· ,
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Other Aspects of Experiments

Complete factorials although useful in several cases have
sorne Timitations. If the factors .involve several levels, the
number of treatment combinations becomes very large. . If
a .large variability among the experimental units exists. the
grouping of these units into more-or less' homogeneous blocks
may not be practical.: Hence, if these blocks are to be made



homogenous it then becomes necessary to include in a block
fewer units than the number of treatments. Of course the
number of factors may be decreased, but if it is imperative
to study all the factors in the same experiment, then one may
resort to the methods of confounding or fractional replica
tion

Under certain situations, the size of a block should be
reduced to maintain the desired homogeneity of the units with
in a block. For example, in an experiment consisting of four
factors each at two levels there would be 24 (or 16) treatments.
A complete factorial would require a block of 16 experimental
units. By the confounding method, one could use blocks of
size 8 which then could have only 8 of the possible 16 treat
ments, and the other half ofthetreatments are used in another
block of size 8. Confounding implies that a treatment effect
(usually chosen to be a certain interaction) is mixed up with
the block effects, hence cannot be estimated from the data.
The other factorial effects however, could be estimated. A
design could be so planned that it consists of more than one
replication, where an interaction could be confounded in a
replication but estimable in another replication where some
other interaction is confounded.

The other possibility Is called fractional replication, i.e.,
it may be desired to .ussonly a fractional of the treatment
combinations. For example, a half replicate of 23 design or
one quarter of 25 can be planned for an experiment. Such
a method also involves a loss of information due to confound
ing of many effects but enables the estimation of other neces
sary effects which are more important than the confounded
ones. This differs from the confounding method in that only
a fraction of the treatment combinations appears in a design,
whereas in confounding, the whole set of treatment combina
tions are used, but they appear in different blocks. Although
some information is lost in these two methods, a designer of
an experiment can choose which effect or effects are not so
important and hence can be sacrificed, and can still study all
the factors in a single experiment.
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other designs belonging to the type of incomplete blocks,
either balanced or so-called partially balanced, are available
for use although they involve more complicated statistical
analysis. One very popularly used design is the so-called split
plot design.· These are mentioned here just to convey the in
formation that there are many possible designs that can be
used for most types of experimental work.

The presentation of these few descriptive aspects of de
signs of experiment, I hope, would encourage chemical re
searchers and other technologists to plan more carefully their
experiments in order to obtain the necessary information. Let
us remember that gathering data is not the mere act of collect
ing; the right kind should he collected in the right manner.
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